Spatial contexts can inhibit a mislocalization of visual stimuli during smooth pursuit.
نویسندگان
چکیده
The position of a flash presented during pursuit is mislocalized in the direction of the pursuit. Although this has been explained by a temporal mismatch between the slow visual processing of flash and fast efferent signals on eye positions, here we show that spatial contexts also play an important role in determining the flash position. We put various continuously lit objects (walls) between veridical and to-be-mislocalized positions of flash. Consequently, these walls significantly reduced the mislocalization of flash, preventing the flash from being mislocalized beyond the wall (Experiment 1). When the wall was shortened or had a hole in its center, the shape of the mislocalized flash was vertically shortened as if cutoff or funneled by the wall (Experiment 2). The wall also induced color interactions; a red wall made a green flash appear yellowish if it was in the path of mislocalization (Experiment 3). Finally, those flash-wall interactions could be induced even when the walls were presented after the disappearance of flash (Experiment 4). These results indicate that various features (position, shape, and color) of flash during pursuit are determined with an integration window that is spatially and temporally broad, providing a new insight for generating mechanisms of eye-movement mislocalizations.
منابع مشابه
Localization of visual and auditory stimuli during smooth pursuit eye movements.
Humans move their eyes more often than their heart beats. Although these eye movements induce large retinal image shifts, we perceive our world as stable. Yet, this perceptual stability is not complete. A number of studies have shown that visual targets which are briefly presented during such eye movements are mislocalized in a characteristic manner. It is largely unknown, however, if auditory ...
متن کاملNeural correlate of spatial (mis‐)localization during smooth eye movements
The dependence of neuronal discharge on the position of the eyes in the orbit is a functional characteristic of many visual cortical areas of the macaque. It has been suggested that these eye-position signals provide relevant information for a coordinate transformation of visual signals into a non-eye-centered frame of reference. This transformation could be an integral part for achieving visua...
متن کاملVisual sensitivity for luminance and chromatic stimuli during the execution of smooth pursuit and saccadic eye movements.
Visual sensitivity is dynamically modulated by eye movements. During saccadic eye movements, sensitivity is reduced selectively for low-spatial frequency luminance stimuli and largely unaffected for high-spatial frequency luminance and chromatic stimuli (Nature 371 (1994), 511-513). During smooth pursuit eye movements, sensitivity for low-spatial frequency luminance stimuli is moderately reduce...
متن کاملSpatial perception during pursuit initiation
Spatial perception is modulated by eye movements. During smooth pursuit, perceived locations are shifted in the direction of the eye movement. During active fixation, visual space is perceptually compressed towards the fovea. In our present study, we were interested to determine the time course of spatial localization during pursuit initiation, i.e. the transition period from fixation to steady...
متن کاملImproved visual sensitivity during smooth pursuit eye movements: temporal and spatial characteristics.
Recently, we showed that contrast sensitivity for color and high-spatial frequency luminance stimuli is enhanced during smooth pursuit eye movements (Schütz et al., 2008). In this study, we investigated the enhancement over a wide range of temporal and spatial frequencies. In Experiment 1, we measured the temporal impulse response function (TIRF) for colored stimuli. The TIRF for pursuit and fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of vision
دوره 7 13 شماره
صفحات -
تاریخ انتشار 2007